A Pipeline for Trunk Localisation Using LiDAR in Trellis Structured Orchards
نویسندگان
چکیده
Autonomous operation and information processing in an orchard environment requires an accurate inventory of the trees. Individual trees must be identified and catalogued in order to represent their distinct measures such as yield count, crop health and canopy volume. Hand labelling individual trees is a labour-intensive and time-consuming process. This paper presents a trunk localisation pipeline for identification of individual trees in an apple orchard using ground based LiDAR data. The trunk candidates are detected using a Hough Transform, and the orchard inventory is refined using a Hidden Semi-Markov Model. Such a model leverages from contextual information provided by the structured/repetitive nature of an orchard. Operating at an apple orchard near Melbourne, Australia, which hosts a modern Güttingen V trellis structure, we were able to perform tree segmentation with 89% accuracy.
منابع مشابه
Trunk localisation in trellis structured orchards
Information gathering and processing in horticulture helps optimise control processes and can enable more precise farm management. Robotics and automation are helping make high resolution, timely, farm wide measurements for tasks such as yield estimation, crop health and soil analysis. An efficient means of storing and processing such information is to discretise it to individual trees. To auto...
متن کاملLiDAR Based Localisation in Almond Orchards
In this paper we present an approach to tree recognition and localisation in orchard environments for tree-crop applications. The method builds on the natural structure of the orchard by first segmenting the data into individual trees using a Hidden Semi-Markov Model. Second, a descriptor for representing the characteristics of the trees is introduced, allowing a Hidden Markov Model based match...
متن کاملMapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors
This paper present a mobile terrestrial scanning system for almond orchards, that is able to efficiently map flower and fruit distributions and to estimate and predict yield for individual trees. A mobile robotic ground vehicle scans the orchard while logging data from on-board lidar and camera sensors. An automated software pipeline processes the data offline, to produce a 3D map of the orchar...
متن کاملTree centric localisation in almond orchards
Robotics and intelligent sensing systems can provide useful information to improve yield and quality in specialty crop production. A key requirement for treecrop applications is the ability to associate sensed data to the individual trees in an orchard. A mobile ground robot with a scanning lidar (laser range sensor) is used to build a three dimensional (3D) model of an orchard and algorithms a...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کامل